Search for New Physics in Electronic Recoil Data from XENONnT

XENON

VIDEBINN'S INNS

ANINE TVO

Jingqiang Ye Columbia University On behalf of the XENON Collaboration CIPANP 2022, Lake Buena Vista, FL Aug. 30, 2022

arXiv: 2207.11330

XENON Collaboration: ~170 Scientists

XENON Collaboration: ~170 Scientists

XENON Collaboration Meeting, July 2022, Torino

Search for ER Signals

This talk focuses on ER searches

See Giovanni Volta's talk for WIMP search in XENONnT

XENON1T Excess

PhySICS ABOUT BROWSE PRESS COLLECTIONS Q Search articles

VIEWPOINT PDF Version 🖪 🗾 < 🗸

Dark Matter Detector Delivers Enigmatic Signal

Tongyan Lin Department of Physics, University of California, San Diego, La Jolla, CA, USA October 12, 2020 + Physics 13, 135

Are the excess events detected by the XENON1T experiment a harbinger of new physics or a mundan background?

Excess electronic recoil events in XENONIT E. Aprile et al. (XENON Collaboration) Phys. Rev. D 102, 072004 (2020) Published October 12, 2020

Recent Articles Redefining How Neutrinos Impede Dark

Matter Searches A new definition of the "neutrino floor" in dark matter experiments clarifies the challenges ahead in differentiating neutrinos from WIMPs.

Pulsars Probe Early Universe Astronomical observations of pulsars have provided new information about a possible phase transition in the early Universe.

To Touch the Sun Jorge Cham, aka, PHD Comics, illustrates the daring mission of the Solar Parker Probe, which flew closer to the Sun than any previous spacecraft.

More Recent Articles »

1-7 keV (reference region)

Expected: 232 Observed: 285

3.3 *o*

Poissonian fluctuation (naive estimate; main analysis uses profile likelihood ratio)

> XENON Collaboration, PRD 102, 072004 (2020) 5

Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

What Caused the Excess?

Solar axions

- Axions can be produced in the Sun via its couplings to electrons, photons, and nucleons
- Solar axions can be detected in LXe detectors via axioelectric effect and inverse Primakoff effect, which was not considered in XENON1T but is included in XENONnT
- Solar axion hypothesis is favored by XENON1T data at 3.4 σ

New physics? Or unexpected backgrounds?

- Facts about tritium
 - Undergoes pure beta decay with a Q value of 18.6 keV
 - Long half-life (~12 years) compared to XENON1T operation time (~2 years)
 - Can be introduced to an underground detector in the forms of HT and/or HTO
- Facts about tritium hypothesis
 - Tritium hypothesis is favored by XENON1T data at 3.2 σ
 - No external constraint on the amount of tritium, in particular HT

XENON Collaboration, PRD 102, 072004 (2020) 6

Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

How to Decipher the Excess

XENONnT

Active volume

Background

1/6

XENON1T TPC

XENONnT TPC

Liquid purification system Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

Radon distillation column

Neutron veto

XENONnT SR0

XENONnT SR0 recorded an exposure of 1.16 t y, ~x2 of XENON1T ER search

Energy Response Modeling and Validation

- Skew-gaussian is used for energy smearing
- Efficiency/smearing is validated by $^{220}Rn/^{37}Ar$ calibration data

Backgrounds

- 222 Rn: ~ 1.7 μ Bq/kg (XENON1T SR1: ~ 12 μ Bq/kg)
- nat Kr: (56 ± 36) ppq (XENON1T SR1: (660 ± 110) ppq)
- ^{83m}Kr background is due to leftover of calibrations
- Spectral shape dominated by two double-weak decays:
 - 136 Xe $2\nu\beta\beta$
 - 124 Xe 2ν ECEC

Why Not Include ³⁷Ar Background?

³⁷Ar is observed in the LZ experiment due to cosmogenic activation during transportation above ground

Facts about ³⁷Ar

- produces a 2.8 keV peak via electron capture
- short half-life: 35 days

Why is ${}^{37}Ar$ not possible in XENONnT?

- Cosmogenic activation
 - Xenon in the XENONnT detector has been underground for years
 - Before taking SR0 data, the entire xenon inventory was cryogenically distilled by the Kr-removal system underground, which is also effective in ³⁷Ar removal. XENON Collaboration, PTEP 2022, 053H01.
 - Cosmogenic activation (or any initial presence of ³⁷Ar after distillation) is not possible
- Leak
 - 'leak' size is small using the conservative estimation of nat-Kr variation
 - combined with the measured ³⁷Ar activity in the lab air, the ³⁷Ar amount 'leaked' into the detector is negligible
 - \Rightarrow ³⁷Ar leak during the SR0 operation is not possible

Special Treatment for Tritium

- TPC outgassed for ~3 months before filling GXe to reduce HTO/HT
- Initial HT was considerably reduced when the entire xenon inventory was processed through the Kr-removal system
- Xenon was transferred to the liquid storage system via high temperature getters with hydrogen removal unit (HRU) before filling
- Prior to cool down and filling, the cryostat and TPC were treated by continuously circulating GXe for ~3 weeks
- GXe or LXe was always purified via the getters when filled into the cryostat
- HRUs were regenerated before SR0

Tritium Enhanced Data (TED)

- Bypass the getter purifying the GXe volume to enhance H2/HT
- The enhancement factor is conservatively estimated to be 10, but can be much larger

Tritium Enhanced Data (TED)

- Bypass the getter purifying the GXe volume to enhance H2/HT
- The enhancement factor is conservatively estimated to be 10, but can be much larger
- No excess is found in TED data after unblinding

Unblind (Main) SR0 Data

- Unblinded ER region only
- NR region (for WIMP search) is still blinded

XENONnT Results

No excess is found in XENONnT!

Background-only Fit Results

	(1, 10) keV	(1, 140) keV
²¹⁴ Pb	56 ± 7	980 ± 120
⁸⁵ Kr	6 ± 4	90 ± 60
Materials	16 ± 3	270 ± 50
¹³⁶ Xe	8.7 ± 0.3	1520 ± 50
Solar neutrino	25 ± 2	300 ± 30
¹²⁴ Xe	2.6 ± 0.3	260 ± 30
AC	0.70 ± 0.03	0.71 ± 0.03
¹³³ Xe	-	160 ± 60
^{83m} Kr	-	80 ± 16

Best-fit values

- ²¹⁴Pb best-fit rate: $(1.36 \pm 0.17_{stat}) \mu Bq/kg$
- Solar neutrino: the 2nd largest ER background below 10 keV
- The total ER background below 30 keV is $(16.1 \pm 1.3_{stat})$ events/(t · y · keV), the lowest background ever achieved in a dark matter detector, ~x0.2 of XENON1T ER search

18

Solar Axion Limit

- Statistical inference is done in 3D space ($g_{ae}, g_{a\gamma}, g_{an}^{eff}$)
- Projection to 2D space of $g_{\rm ae}$ and $g_{\rm a\gamma}$ as they matter most for the low-energy region

Solar Axion Limit

- Valid for axions with mass below 100 eV/c^2
- Best direct detection limit of g_{ae} for axion mass below 100 eV/c^2
- Best direct detection limit of $g_{a\gamma}$ for axion mass between 1 and 100 eV/ c^{21}

Neutrino Magnetic Moment Limit

- Constrain the effective neutrino magnetic moment μ_{ν}^{eff} using solar neutrinos as LXe detectors are not sensitive to neutrino flavors
- XENONnT result: $\mu_{\nu}^{\text{eff}} < 6.3 \times 10^{-12} \,\mu_{\text{B}}$ (90% C.L.)

Bosonic Dark Matter

Dark photon

- Bosonic DM:
 - ALPs
 - Dark photons
- Competitive limits for mass in (1, 39) and (33, 140) keV/c^{21}
 - No limit/sensitivity between (39, 44) keV/c² because ^{83m}Kr background rate is not constrained
 - The maximum local significance ~1.8 σ at ~109 keV

124 Xe 2ν ECEC

- 124 Xe 2ν ECEC rate is unconstrained in the entire analysis; BRs are fixed
- Stand out in the energy spectrum due to the ultra-low background
 - LL peak is visible even with only ~1% BR
 - KL & KK peaks are used for calibration purpose (energy resolution)
- The measured half-life $T_{1/2}^{2\nu \text{ECEC}} = (1.15 \pm 0.13_{\text{stat}} \pm 0.14_{\text{sys}}) \times 10^{22} \text{ yr}$ with a significance of 10 σ
 - Statistical uncertainty decreases to the same level of the systematic uncertainty
 - Consistent with the latest XENON1T result, $T_{1/2}^{2\nu \text{ECEC}} = (1.1 \pm 0.2_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ yr.}$ XENON Collaboration, <u>Phys. Rev. C 106, 024328</u>

Summary

- This talk presents the XENONnT ER search with 1.16 tonne-year exposure
- XENONnT has achieved the lowest ER background rate ever in a dark matter detector, $(16.1 \pm 1.3_{stat})$ events/(t \cdot y \cdot keV) below 30 keV
- The XENON1T excess is NOT observed in XENONnT
- XENONnT places the competitive limits on several new physics models, including solar axions, neutrino magnetic moment, ALPs, and dark photons

arXiv: 2207.11330

• Improved measurement of ¹²⁴Xe 2 ν ECEC half life, $T_{1/2}^{2\nu$ ECEC} = (1.15 ± 0.13_{stat} ± 0.14_{sys}) × 10²² yr

www.xenonexperiment.org xe-pr@lngs.infn.it

twitter.com/xenonexperiment

facebook.com/XENONexperiment

instagram.com/xenon experiment

Back up

Two-phase Time Projection Chamber (TPC)

- Signal detection:
 - Light signal (S1)
 - Charge signal (S2)
- 3D position reconstruction
- Energy reconstruction

Energy reconstruction

ER events deposit all the energies into S1 and S2

Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

ER Backgrounds in XENON1T

- Dominant background from beta decay of ²¹⁴Pb, a daughter of ²²²Rn
- ~13 μ Bq/kg 222 Rn
- Lowest ER background level among all dark matter direct detection experiments (before XENONnT is online)

Solar Axion Hypothesis

Model independence: three components scale independently

Most favored hypothesis by the XENON1T low-energy excess data

Solar Axion Hypothesis

30

Solar Axion Results

90% confidence level volume in three axion coupling space

Project to 2D for easy visualization

Neutrino Magnetic Moment Hypothesis

Detection

$$\frac{d\sigma_{\mu}}{dE_{\rm r}} = \mu_{\nu}^2 \alpha \left(\frac{1}{E_{\rm r}} - \frac{1}{E_{\nu}}\right)$$

PRD 102, 072004 (2020)

Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

Neutrino Magnetic Moment

Tritium Background Hypothesis

Peaked at low energies

Long half-life (12.3 years)

Fitted rate: (159 \pm 51) events/(t·y)

 3 H/Xe: (6.2 ± 2.0) × 10⁻²⁵ mol/mol

~3 tritium atoms per kg xenon

PRD 102, 072004 (2020)

Possible Explanations

Solar axion

A generic mono-energetic peak Best-fit @2.3 keV

Jingqiang Ye, Columbia U. (jingqiang.ye@columbia.edu)

Solar neutrino with an enhanced magnetic moment

New physics? Or unexpected backgrounds?

Tritium

XENON Collaboration, PRD 102, 072004 (2020) 35

Solar Axion vs. Tritium

An unconstrained tritium component is added to both alternate and null hypothesis

Tritium is outperformed by solar axions

The significance of solar axion hypothesis is reduced to 2.0 σ

Deficit around 17 keV?

Unbinned likelihood used in analysis

Deficit gone with rebinning

XENONnT Upgrades

Liquid purification system

- Excellent purity achieved within the 8.5 tonne total mass
- Unprecedented long electron lifetime in a LXe TPC (currently 20 ms)
- System uses ultra-low radon emanation purifiers

Event distribution

Energy Reconstruction

Detection Efficiency

Energy Spectrum Modeling

Backgrounds

- 222 Rn: ~ 1.7 μ Bq/kg (XENON1T SR1: ~ 12 μ Bq/kg)
- $(660 \pm 110) \, \text{ppq}(56 \pm 36) \, \text{ppq}$
- ²¹⁴Pb rate is constrained by a uniform distribution between ²¹⁴Po and ²¹⁸Po in the fit
 - : $(0.777 \pm 0.006_{\text{stat}} \pm 0.032_{\text{sys}}) \,\mu\text{Bq/kg}$
 - ²¹⁸Po: $(1.691 \pm 0.006_{\text{stat}} \pm 0.072_{\text{sys}}) \mu \text{Bq/kg}$
- Spectral shape dominated by two double-weak decays:
 - 124 Xe 2ν ECEC
 - 136 Xe $2\nu\beta\beta$
 - ^{83m}Kr background is due to leftover of calibrations; unconstrained in the fit

Rn

Po

5.5 MeV

6.0 MeV

⊧At

Bi

20 Min

81

Po

Pb

5.3 Me

138 Day:

Bi

5 Days

Pb

Hg